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First and second order density corrections to the transport

coefficients of a gas of Lennard-Jones molecules are evaluated
numerically, The results are ba§ed on the formal kinetic theory
development of Snider and Curtiss as later modified by Smider and
McCourt. This treatment, in turn, is based on the modification of
the Boltzmann equation suggested by Green. This modification is an
approximation to the series development of Bogolubov and Hollinger
and Curtiss. The numerical methods used in the evaluation of the
various integrals are discussed. The effect of three body collisions
on the first density correction term is considered approximately

through a generalization of the Enskog rigid sphere expression.
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THE TRANSPORT PROPERTIES OF A MODERATELY DENSE LENNARD-JONES GAS

The theét& of.trgngbort phenomeﬁa based on fhe Eoltzmann equation
applies only to léﬁvdensfty gases composed of moﬁatomié moiecules.

It is limited By the basic assﬁmptioné df the Boltzﬁaﬁn équation
which completely ignore three body collisions and require that the
molecular dimensions be small in compariéon with the mean free path.
In order to extend the theory to higher densities the Boltzmann
equation must be appropriately modified.

The first attempt to describe the transport properties of dense
gases is due to Enskog1 who studied an idealized system of rigid ‘
spherical molecules. His treatment involves a modification of the
original Boltzmann equation to include twb separate effects, He
recognized that due to the finite size of the interacting molecules
momentum and energy are instantaneously transferred between molecular
centers on collision. Secondly, he allowed, approximately, for the
effect of three body collisions by introdﬁcing the equilibrium radial
distribution function Y evaluated at impact separation to describe
the effect of shielding of a colliding pair by a third molecule.

For rigid spheres Y at the impact separation is given by the density

expansion

y=v s (B v ®

where B and C are respectively the second and third virial

coefficients, and n is the number density,

1 D, Enskog, Kgl. Svenska Vetenskapsakad. Handl 63, No. 4 (1922).
See also Molecular Theory of Gases and Liquids, J. O. Hirschfelder,
C. F. Curtiss, and R. B. Bird, page 634 (John Wiley, New York, 1954),



The more realistic case of a gas of soft molecules has been dis-
pussed by a number of authors, including Bogolubovz, GreeﬁS, and
Hollinger and Curtissag These authors separately developed identical
contributions to the Boltzmann collision integral describing
collisional transfer, 1In the limiting case of rigid spheres, these
terms are identical with the Enskog result when three body effects
are ignored, by setting Y equal to unity. Bogolubov, and Hollinger
and Curtiss have developed in addition a term describing the effect
of three body collisions., Both types of corrections to the Boltzmann
collision integral lead to contribﬁtions of order A and higher‘in
the density expansions of the transport coefficients.

The three body collision correction term mentioned above is quite
complicate& and has not yet been used in a practical calculation, It
is possible on the basis of the Enskog theory, however, to approximate
the effect of three body collisions. The Enskog three body corrections
to the transport coefficients appear in the linear and higher terms

of the density expansion. The corrections of order /2 are

_ ,\(e) n (C/B) (2)

for the coefficient of thermal conductivity and

- 7(0),! (C/5> | | (3)

N. Bogolubov, J. Phys. (U.S.S.R.) 10, 265 (1946).

H. 8. Green, Molecular Theory of Fluids (North Holland Publishing
Co., Amsterdam 1952). '

4 H. B. Hollinger and C. F. Curtiss, J. Chem. Phys. 33, 1386 (1960).




(o) (%)
for the coefficient of shear viscosity where A and 7 are

the constant terms in tﬁe dehsity expansions and B and C are
respectively the second and third rigid sphere virial coefficiehts.
In his early treatment of the problem, Enskog suggesfed, with
considerable success, an intuitive method of applying the rigid
sphere results to the soft p&tential case. An éssential point in
Enskog's intuitive modification is the evaluation of Y in terms of

the equation of state through the relation5
o, [_L(22) _./]
Y = 7o, | nk \57 : (4)

where b:, is a function of the temperature, 7 , It is easily
shown that if Y 1is to approach unity in the limit n —»0, &6,

must be taken to be

¢ - o 7 ' (5)
bo = 2 (78D

It then follows that the Enskog relation is

_ d(7re) )/ vee  (6)
y = 7 ~ ”o/r{ /‘77_(7'49) +

A comparison of this result with the rigid sphere expression, Eq, 1,
then suggests that the results of the present treatment may be
corrected approximately for the effects of three body collisions by

replacing the ratio C/B in the rigid sphere expressions,

3 See Molecular Theory of Gases and Liquids, J. 0. Hirschfelder,
C. F, Curtiss, and R, B. Bird (John Wiley, New York, 1954), p. 649,



Eqs. 2 and 3, by the ratio

d (7¢) (7)
/7 /Z/dr (75)

evaluated for the soft potential. A more rigorous generalization of
the Enskog treatment to the soft molecule case will be discussed in
a later paper.

Livingston and Curtiss6 have investigated the question of three
body corrections to the rigid.sphere transport coefficients with
more rigor than did Enskog., They have obtained further linear
corrections by considering the perturbation of the radial distribution
function. These corrections, however, are not easily generalized to
the soft potential case.

On the basis of Green's collisional transfer modification of
the Boltzmann equation, Snider and Curtiss7 developed expressions for
the corrections to the transport coefficients. . The explicit
expressions for these collisional transfer density corrections have
been considered further by Snider and McCourts. They succeeded in
simplifying appreciably the form of the expressions and showed that
certain combinations of the integrals can be evaluated immediately
in terms of the second virial coefficient and its derivatives.

For a purely repulsive inverse power potential the remaining integrals

P. M. Livingston and C. F. Curtiss, Phys., of Fluids, 4, 816 (1961).
R. F. Snider and C. F. Curtiss, Phys. of Fluids, 1, 122 (1958);
3, 903 (1960).

® R. F. Snider and F. R. McCourt, Phys. of Fluids, 6, 1020 (1963).




~were evaluated by an interesting expansion about the rigid sphere
case as a limit,
dengity covvections the
In the present paper the evaluation of theAtransport coefficients
is considered for a potential function including an attractive as

well as a repulsive term., Specifically the calculations are based

on the Lennard-Jones potential defined by

Pray = € F () ®

where

Pez) = y[z"f"-z"‘_] (9

r 1is the separation distance of the molecules, g 1is the depth
of the potential minimum, and 0 1is the separation distance at
which the potential is zero, |
The basic problem is the numerical evaluation of certain triple
integrals, the integrands of which depend on functions also obtained

by numerical integration.

1. THEORY
The expressions for the coefficients of thermal conductivity,
shear and bulk viscosity obtained by Snider and McCourt can be

written in the form

%
_ z.a//? 7 sy,
A= LE (“7) af5-2T" 25 ~Ziem-7) o

) BATTTATVE Yy s Ry - 1))
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in which m is the mass of a molecule, k 1is the Boltzmann

constant, T is the temperature,and a;s 50 and c, are
defined by
~ % * %
7 RT\E2,2) 15 [2 kT [ Y Y 'ad
PPl )_(2 2, = 7 /;—)n ) +n83 37’72/;] (13
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In these expressions, B 1is the second virial coefficient,
2, 0%
n- is the usual dimensionless viscosity cross-section,

and N A>Ty, , H, ,etc. are triple integrals which are discussed

in detail later.




The expressions for the tranmsport coefficients can also be

E N

written in the form of polynomi_ais in the density,

Aw AV[1 wraby e C"J (16)
Tt o, gt C] o
7= 2"[7+28 *+7C an

H = 7(’)[ "z C)l] . . ' (18)

where A (0) and 7(0) are the coefficients in the limit of a
dilute gas, and the B, , B, , C, , le and C , ‘are the
"transport property Qirial coefficients" given by

P4

Vol —-Z3)  (19)

* » - 9’
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where
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YNy 7e)

%
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(24)

(25)

(26)

(27)

(28)

(29)
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In summary, to determinethe ‘transport coefficients in the

present approximation, five basic integrals F, , N, , I, ,

(Hy + R, ) and (H, + R, ) -'ére;_,requifed. Explicit expressions

for these quantities are given by Snider and McCourt and involve

_triple integrationms over the variables 2, g and ¢¢, where A

is the relative separation of the two colliding molecules, 3. is

the magnitude of their relative velocity and P-uv is the angle

between the associated;vectors, These variables define a

collisional trajectory and a point along this trajectory. As a
result. of the symmetry,» the integrals can be'wr1tten as functions
only of that portion of relative position-velocity space defined
by points on the incoming portion of the traJectories. It is
convenient, 1in the numerical evaluation of the integrals to change
variables from (18, g) to (go, g’o ) where g0 is the initial
relative velocity in a colllsion and f’o is the dlstance of
closest approach of the particles. The varlables (go, 5,)
uniquely describe a trajectory and the remaining variable r
fixes' the position on this trajectory. Before ‘writing these
expressions it is convenient to introduce the dimensionless

variables

ﬂ* - A/r (31)
e 5, (32)

S
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p
N

(34)

* N
Je = Vi §° (35)

From this point on the explicit expressions are written in terms
of these dimensionless variables but for typographical convenience
the asterisks are omitted. In terms of these dimensionless

variables the explicit expressions for the triple integrals are
27 -9e z ¢ %
Fo w220 Jlfeon(§) g ik pi Lt - pea]

¥ Alp, %)

G/’ s » l¢[’°,rt,4){2 Y + ¢°fllw)to'n (zf)

-Zcb;clzu]:u"(z ) * Y cos (2 w) a:(z’f)}
2 %
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(36)
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in which / (2) ig rhe derivative of / (%) and

///7;,,—;,\ = 7.‘-— ey - /R /?:.) (41)
( %
G{j.,!.,&) = )a‘[ f.z-— £2)] - 3',3[].2 - /(;o)]}) “ (42)

p= & {-J’ S L2A ]/z/v"?/; . 6 L (43)

s s 5 (44)
Y .r.[; VK ‘./(,//);:, £)

p4 ‘“ ﬁ;:___/m)]/‘! ;g)j],):.,f) ) I/J} s

P Ad “
[yt 23] %
(46)

%
w T ‘.f Z—J’ - 74/}2177 J/p';'c}‘<7 7o, £)

The integrations in equations (36), (37), (38), (39) and (40)
are limited to regions of the relative position-velocity space
corresponding to non-bound trajectories; In the theory, this results
from the use of the molecular chaos assumption to derive the
Boltzmann equation, The molecular chaos assumption requires that two
molecules in collision have been separated in their past history.

Thus, if the treatment is limited to binary collisions, the mplecular
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chaos eséumptibﬁfeannbf’be used in the bound state region. Numerically,

this restrictlon arises 'because the integrands of those integrals ;
which cannot’ be téduéed to: the second virial coefficient or its
temperature derivitives becomé undefined in the bound,state_regioq;'
There is a question as to whether to retain the full second virial
coefficient of limit it also to non-bound state contributions. The.
situation is further complicated by the fact that such terms arise in
the treetmeﬁt in two ways. First, the second virial coefficient
appearsfin thevexpreSSion'for the equilibrium pressure in which case
the full eoeffieient must ‘surely be used.” Secondly, certain molecular
integfals reduce to the\integral representation of the second virial
coefficient. It is in the latter case that the difficulty arises.
Since the.cohtriﬁutions to the transport coefficients due to_the
bound state region havée not been treated in a satisfactory theoretical
manner; it is difficult at this time to decide how the situation
sheuld’be resolved., In this paper, the Ffull second virial coefficient
is used ﬁﬁerever it'afpears explicitly.

In the non-bound regidh of the relative position-velocity space,
the limits on the iﬁtegratiou variable r are £, to infinity.

limits of
Thehlntegratlon° on J° and §, are more complicated, 7In this

case th'eu;.sneté;ratlon is restricted as indicated in figure 1,

Region I is excluded .from the integration since here the total energy

which is measured ‘J,z is less than the potential energy given by
}[ge) . Region II is excluded since it is the region of bound

states, Points along the limiting curve a  represent head on

collisions where there is no rotational kiretic energy. Points near
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the boundary curve c represent trajectories in which the particles
approach each other and then orbit a large number of times before
finally separating. These points correspond to collisions where j."
is slightly less than the maximum in the effective potential energy
curve as illustrated in figure 2. Points near curve b also
represent an orbiting situation. However, in this case :." is
slightly greater than the maximum in the effective potential energy
curve, After orbiting for some time, the particles in this case fall
together through the minimum in the effective potential energy, then
go back out for a second long period of orbiting before they finally
separate. In both orbiting situations the trajectory becomes nearly
circular (1‘.e., the radial velocity becomes nearly zero) at a value
of r corresponding to the maximum in the effective potential
energy curve, From figure 1 it is seen that for values of J'
less than a critical value the integration over ¥, 1in (36), (37),
(38), (39) and (40) must be carried out in two parts. The i.ntegfation
is first from a to b , then from ¢ to infinity, For
values of ’. greater than the critical value the range of the
variable Jfeo extends continuously from a to infinity.

The integrals p , Y , X , and «w are closely related
to the integrals which give the time elapsed during collision and
the total angle of deflection. The quantity G(J'af-,f) which

appears in the denominator of the integrand can easily be shown to be

F 3r r)

where j’ is the magnitude of the radial component of the velocity.




At a turning point J § 1s zero and thus there is a pole in the
integrand of p Y , X and w0 at £= % . In
general this pole causes no difficulty. However, for values of

J?. and ¥, corresponding to points on either the curves 5
or ¢ and when ¥ has the value corresponding to the radial
separation at the maximum in the effective potential curve, the
orbit is circular and both Jr and ifs time derivative are zero.
This is sufficient to cause divergence of the integrals @ , _27-,
;!. , and ¢« on the curves b and ¢ . Fortunately the
divergence of these quantities does not effect the absolute conver-
gence of the integrals defined by (36), (37), (38), (39) and (40).
This is ensured by the presence of the factor H(J,‘,J;). It does,
however, introduce computational difficulties and it is convenient
in the §, integration, for values of g below the critical value,
to integrate from a to b-'J;, and from c¢ + Ji to infinity
where d, , and J; are small, adjustable parameters, By
numerical experimentation, it was found that taking d, = /"-.;5“/)
and 4; = /”‘3 essentially eliminates the difficulty in the
evaluation of the triple integrals. Again a minor difficulty was
encountered due to the presence of a pole in the integration at

2 = f, due to the factor Q(],’ fo,A) . This was treated
in the same manner as the poles in the integrals (43) - (46). The

details of the integration methods are discussed below.

15
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Fig, 2

2z
The effective potential function, ,0(,._) v _é. [J,z-— ;0(!,)]
for an orbiting angular momentum Ar*
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2. NUMERICAL METHODS
Since the integrals (36) - (40) are similar in form, it is
convenient to describe the numerical method used to compute a typical

quantity
‘s)
z=[fI/7 (> £.,2) d4 75 “q- (47)

The integration can be représented in the following manner

Z7)

7 = / F (g.) dpe | 8)

where
() 2)
(:;J = / T lge, £) IS “49)
in which
7)) -~ 3) ‘
T(J’ 5) 53_4/ ?‘(]‘:r‘)‘) 72 (50)
(£

It is noted that in the general case the integrand 1?’ <7b !3 40
depends on the functions (43) - (46). These quantities must also
be determined by numerical integration,

With the definitions

T o
(51)
%)/JO,:-) 3;’./. ¥ Q(IO,{.){)
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7T
]zs{J”!‘ ‘Q /! ¢(3. £, i£) . 6D

]('3)(:, 3-.) = f‘[IL‘G(]Mf" ;_)]0,\; 53
: FAN j' C;/J,f.r)

and

({ 9o A [ (d 6/’»’ .fj
Liyy (30, 5o, 2) sz_{?ew;fs:r) s

the integrals P s Y s Z ‘,Aénd ¢> can be réwrit:ten in the form

Pl fsa) = £ Lgd - Ha] 2 f 2t -Zggne)f) 9

I"(J.,s.,&)_-,z’f’}z /m]/z[ Z, (100 5)

- ]2{)-_(7f’)£»")_ * _:7:_[ . (56)

X/J"’ %) *; [] //r)]/z ff/,)b’?) } ©7
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and

y)

2 2%
wlge,£) = =% [35- 2ee)] " 650, £ (58)
The integrals I1 and 13 are independent of AR whereas I2
and I4 depend on all three variables !, s §» » A . The values
of 12 and I4 were required at each of the quadrature points R,°

used in evaluating (50). A typical integral from 4, to infinity was

computed by summing the contributions from each interval (.o ‘A J‘* P

J 2+ .

"" ".“ RN (59)

where ,Q ~ 18 the largest pivotal point, The individual terms on the
right hand side of (59) wereexpressed as integrals from -1 to 1
andwere evaluated with Gauss' quadrature formulag. In the evaluation
of each of the integrals, the 16 point Gauss formula was used. To
obtain I1 and 13,, integrals from ¥, to A, are required.
Since the integrands in this case have a pole at the lower limit it
is no longer possible to use the Gauss formula., However, introducing

a simple change of variable the integrals can be expressed in the form

/

Aly)
/ {7 —y‘)’/z/j (60)

-/

where the pole originally at J, is now at the point y = -1, and

the function -}l’(#) is finite and well behaved throughout the
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range of integration. Under these conditions the numerical integration
is tractable and can be carried out by use of a quadrature formula

due t§ Mehlerg,
,0/) 7 < 2 /)
4
/ z)/z =2 Z /[“’ ] (61)

This is a particular case of a more general quadrature in which the

weight function has the form

wig)="(/-4)(775)° (62)

where o and @ are any numbers greater tham -1. Tt is seen
that the usual Gauss formula results on setting X = =0
In the evaluation of the integrals I1 and 13 s, 16 points were
used in the Mehler integration.

As pointed out earlier the integrand in (50) has a pole at

£o . In order to obtain accurate results both Mehler. and
Gauss formulae were employed, the division point being arbitrarily
chosen at S = 2% . Inthe Mehler integration 32 points were
used and in the Gauss integration 16 points were used, The range of
the variable in the integral (49) has been discussed in Section 1.
Depending on whether ij. is less or greater than the critical value
we require

f?’“},.,r.,)/ﬁ ,«-f ?u};. £)5 o (63)

sz

° 7. Kobal, Numerical Analysis (John Wiley, New York, 1961)
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or

(64)

0 z)
/?— (Jo)fa)/.fo

After appropriate change of variable, each integral can be expressed

in the form
/
p.
J %) {7 (65)
-/

They were then evaluated using a 16 point Gauss quadrature.
The integral (48) may be expressed as

oo

1
fe é’(t) oz (66)

©

which can be approximated by the summation

M
Z U, {f(lze) (67)
=/

where the points X2, are the zeros of the M  order Laguerre

polynomial ch(zo . The weight coefficients #%t, are given by

/ [ /! :
w, =
Sl N IR (0

Values of &, and %4 are tabulated for a wide range of M

by Rabinowitz and Weisslo. In the evaluation of these integrals,

the number of Laguerre points Af was taken to be 48, It was found,
however, that in each case the function f{hﬂ decreased sufficiently

rapidly with X that it was necessary to retain only the first 18

10 P. Rabinowitz and G. Weiss, Math. Tab., Wash. 13, 285 (1959).
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3. NUMERICAL RESULTS AND CONCLUSIONS = '~
.. The numerical evaluation' 6f the various integrals has Béen':
carried out oh a CDC 1604 computér: ™ The evaliation of the two
"transport property second virial coefficients", B: ‘and B:
and of the "third‘virial'coefficientd"(1f s Q& and C ,  at a

particular temperature required 15 to 20 minutes of computigg time,

0
T

(36) - (40), values of g, below the critical value became

For smaller T values, as a result of the factor. exp(~ ) in
increasingly important, and the operating time of the program
increased accordingly. These five coefficients wére evaluated at
six widely spaced values of the-reduced temperature. The results
are given in the table and illustrated in the figures.

The values of (3;-and Agj' were corrected apprdximatély for
the effect of three body collisions in the ménnér described in the
introduction. ‘These "corrected" values are also given in the table
and figures.,

The effect 'of pressure on the transport coefficients has been
discussed previously by Stogryn and Hirscﬁfélderll. Their study is
based largely onvthe effect of stable and metastable bound pairs of
molecules. Their results for monatomic gases'are also illustrated
in the figures., 'These authors compared their results with experimental
measurements of~the~preSsufe dependence of the transpoft'coeffiéients.
Their reduced values of the second virial coefficients are indicated
in the figures by circles.

Recently, Flynn, Hanks, Lemaire, and Ross12 have determined the

—————

D. E. Stogryn and J. 0. Hirschfelder, J. Chem., Phys., 31, 1531
(1959) ; 33, 942 (1960).

G. P. Flynn, R. V, Hanks, N. A, Lemaire, and J. Ross, J. Chem. Phys.,
38, 154 (1963).

12
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viscosity of He, Ne, Ar, and N, as functions of the density at four

2
temperatures. The values of the viscosity second virial coefficient,
which they obtained from their measured values, have been converted
to reduced values using as potential constants, for He, € /k = 10.8
and @ = 2,57 A; for Ne, € /k = 33,7 and 0 = 2.576 A ; for Ar,

€/k = 119.5 and ¢ = 3.409 A; and for N,, € /k = 91.5 and

¢ = 3,681 A, The resulting values of ﬂ;, are indicated in Fig. 3
by squares.

From the law of corresponding states one would expect the

reduced experimental values given in the figures to lie on smooth
curves., For this reason, it is probable that the scatter of the
points is an indication of the experimental uncertainty., The experi-
mental points in the high temperature region tend to indicate that
the correction for the effects of three body collisions is larger
than that indicated by the approximate correction msed in the
present discussion. A more rigorous evaluation of this correction
will be discussed in a later paper. The experimental points in the
low temperature region indicate that either the correction is of
opposite sign or substantial disagreement will remain, This difficulty
may be due to the effect of bound pairs of molecules. As indicated
in the previous discussion, this problem, which is of more importance

at lower temperatures, has not been properly treated in the

theoretical development,
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TABLE OF VALUES OF THE TRANSPORT PROPERTY VIRIAL COEFFICIENTS

0.5 1 2 8 30 100

-7.7224 -1.2129 0.6942 0.8991 0.6827 0.5156

12,8303 4,6662 3.0513 1.6967 1.1169 0. 8008

17.24 5,452 3,187 1,502 0.836 0.487
-134,97 12.136 5.636 2,19 1.200 0.697
-217.56 -1.511 3,420 1,592 0.819 0.459
(67) <3,9915  0.4305 0.1005 0.0577  0.0582

ale 1.8876 2,7875 0.8981 0.4919 0.3434
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Fig. 3 The reduced, "second virial coefficient™ for viscosity. The three

curveg are a) B,, the quantity computed according to Eq. 21,

b) (Bl)c’ the latter quantity corrected approximately for the effect

of threé body collisionsi according to Eq. 7, c) values computed by
Stogryn and Hirschfelder*®, The circles are reduced experimental values
given by Stogryn and Hirschfelderll, The squares are based on the
experimental values of Flynn, Hanks, Lemaire, and Rossl2,
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Fig.4

The reduced "second v1r1a1 coefficient”" for thermal conductivity.
The three curves are a) B, , the quantity computed according to
Eq. 19, b) (BA) , the latter quantity corrected approx1mate1y for
the effect of thfée body collisions, iccordlng to Eq. 7, c¢) values
computed by Stogryn and H1rschfe1der The points are experimental
values,



